Urothelial Cytotoxicity and Regeneration Induced by Dimethylarsinic Acid in Rats

Abstract
Inorganic arsenic is a known human carcinogen of the skin and respiratory tract. Epidemiologic evidence indicates that it is also carcinogenic to the urinary bladder and other internal organs. Lack of an animal model has limited progress on understanding the mechanism of arsenic carcinogenesis. It was recently reported that high doses of an organic arsenical, dimethylarsinic acid (DMA), increased urinary bladder tumors in rats when administered in the diet or in the drinking water for 2 years, with the female being more sensitive than the male. We previously showed that high doses of DMA (40 or 100 ppm of the diet) fed for 10 weeks increased urothelial cell proliferation in the rat. Treatment with DMA also increased renal calcification and increased urinary calcium concentration. In 2 experiments, we examined the urothelial proliferative effects of treatment with 100 ppm DMA in the diet in female F344 rats for 2 and 10 weeks and for 6 and 24 h, and 3, 7, and 14 days. Cytotoxic changes in the urothelium were evident by SEM as early as 6 h after treatment was begun. Foci of cellular necrosis were detected after 3 days of treatment, followed by widespread necrosis of the urothelium after 7 days of treatment. The bromodeoxyuridine (BrdU) labeling index was not increased until after 7 days of treatment, suggesting that administration of DMA results in cytotoxicity with necrosis, followed by regenerative hyperplasia of the bladder epithelium. Although the rat provides an animal model to study the urothelial effects of DMA, the relevance of this finding to inorganic arsenic carcinogenesis in humans must be extrapolated cautiously, due to the high doses of DMA necessary to produce these changes in the rat and the differences in metabolism of arsenicals in rodents, especially rats, compared to humans.