Spin-Orbit Coupling and Ion Displacements in MultiferroicTbMnO3

Abstract
The electronic and magnetic properties of TbMnO3 leading to its ferroelectric (FE) polarization were investigated on the basis of relativistic density functional theory (DFT) calculations. In agreement with experiment, we show that the spin-spiral plane of TbMnO3 can be either the bc- or ab-plane, but not the ac-plane. As for the mechanism of FE polarization, our work reveals that the "pure electronic" model by Katsura, Nagaosa and Balatsky (KNB) is inadequate in predicting the absolute direction of FE polarization. For the ab-plane spin-spiral state of TbMnO3, the direction of FE polarization predicted by the KNB model is opposite to that predicted by DFT calculations. In determining the magnitude and the absolute direction of FE polarization in spin-spiral states, it is found crucial to consider the displacements of the ions from their ecntrosymmetric positions.