The evolutionary history and conservation value of disjunctBartonia paniculatasubsp.paniculata(Branched Bartonia) populations in Canada

Abstract
Understanding the spatial distribution of genetic diversity and its evolutionary history is an essential part of developing effective biodiversity management plans. This may be particularly true when considering the value of peripheral or disjunct populations. Although conservation decisions are often made with reference to geopolitical boundaries, many policy-makers also consider global distributions, and therefore a species’ global status may temper its regional status. Many disjunct populations can be found in the Great Lakes region of North America, including those of Bartonia paniculata subsp. paniculata, a species that has been designated as threatened in Canada but globally secure. We compared chloroplast sequences between disjunct (Canada) and core (USA) populations of B. paniculata subsp. paniculata separated by 600 km, which is the minimum distance between disjunct and core populations in this subspecies. We found that although lineages within the disjunct populations shared a relatively recent common ancestor, the genetic divergence between plants from Ontario and New Jersey was substantially greater than expected for a consubspecific comparison. A coalescence-based analysis dated the most recent common ancestor of the Canadian and US populations at approximately 534 000 years ago with the lower confidence estimate at 226 000 years ago. This substantially predates the Last Glacial Maximum and suggests that disjunct and core populations have followed independent evolutionary trajectories throughout multiple glacial–interglacial cycles. Our findings provide important insight into the diverse processes that have resulted in numerous disjunct species in the Great Lakes region and highlight a need for additional work on Canadian B. paniculata subsp. paniculata taxonomy prior to a reevaluation of its conservation value.