Dynamic cerebral autoregulation during exhaustive exercise in humans

Abstract
We investigated whether dynamic cerebral autoregulation is affected by exhaustive exercise using transfer-function gain and phase shift between oscillations in mean arterial pressure (MAP) and middle cerebral artery (MCA) mean blood flow velocity ( Vmean). Seven subjects were instrumented with a brachial artery catheter for measurement of MAP and determination of arterial Pco2 (PaCO2) while jugular venous oxygen saturation (SvO2) was determined to assess changes in whole brain blood flow. After a 10-min resting period, the subjects performed dynamic leg-cycle ergometry at 168 ± 5 W (mean ± SE) that was continued to exhaustion with a group average time of 26.8 ± 5.8 min. Despite no significant change in MAP during exercise, MCA Vmean decreased from 70.2 ± 3.6 to 57.4 ± 5.4 cm/s, SvO2 decreased from 68 ± 1 to 58 ± 2% at exhaustion, and both correlated to PaCO2 (5.5 ± 0.2 to 3.9 ± 0.2 kPa; r = 0.47; P = 0.04 and r = 0.74; P < 0.001, respectively). An effect on brain metabolism was indicated by a decrease in the cerebral metabolic ratio of O2 to [glucose + one-half lactate] from 5.6 to 3.8 ( P < 0.05). At the same time, the normalized low-frequency gain between MAP and MCA Vmean was increased ( P < 0.05), whereas the phase shift tended to decrease. These findings suggest that dynamic cerebral autoregulation was impaired by exhaustive exercise despite a hyperventilation-induced reduction in PaCO2.