Technology Challenges for Silicon Nanophotonics and Beyond

Abstract
The development of Si-based photonics has been far behind the development of electronics for long time. There are two reasons for that. As silicon is an indirect band gap semiconductor, achieving light emission and gain is quite difficult. On the other hand, for using silicon as a light guiding material for passive devices, the main constrains until recently were relatively high propagation losses and high fiber-to-waveguide incoupling losses. The general trend towards more compact photonic devices together with progress in fabrication techniques resulted in the development of two nano-photonic technologies for next generation optical devices: photonic crystals and nanowire waveguides-based devices. To drastically increase the integration density and achieve subwavelength confinement of light along the propagation direction, plasmonic waveguides have been proposed. Surface plasmons are electromagnetic modes constituted on the interface between a metal and a dielectric. The tradeoff between the light confinement and propagation loss has here a vital importance.