Molecular Mechanisms of Enteroendocrine Differentiaton

Abstract
Passing through a complex series of developmental steps, the visceral endoderm differentiates into four intestinal epithelial lineages comprising enterocytes, goblet cells, paneth cells, and enteroendocrine cells. The intestinal enteroendocrine system consists of at least 15 different cell types, which can be classified on the basis of morphological criteria, expression of secretory products, and abundance of specific marker molecules. During intestinal development and in the adult gut, neuroendocrine subpopulations display strictly controlled differences in their geographical distribution that go along with dramatic differences in cell type-specific gene expression. Identification to transcription factors and regulatory DNA elements responsible for cell-specific gene expression in different neuroendocrine cell types as well as various transgenic and "knock-out" mouse models have largely added to our understanding of mechanisms controlling appropriate special and temporal activation of enteroendocrine differentiation programs. This article reviews current in vitro and in vivo studies analyzing different molecular aspects of enteroendocrine differentiation. In addition, the influence of intestinal diseases including malignant transformation on enteroendocrine differentiation and the underlying mechanisms will be discussed.