Lack of cross-tolerance to the antinociceptive effects of systemic and topical cannabinoids in morphine-tolerant mice

Abstract
Opioids and cannabinoids produce antinociception through activity at spinal, supraspinal and peripheral sites. Tolerance to the antinociceptive effects of both the opioids and the cannabinoids develop when these agents are administered chronically. Although mutual potentiation of antinociceptive effects have been reported between opioids and cannabinoids, the development of antinociceptive cross-tolerance between these systems has not been demonstrated consistently. In the present investigation, we explored the possibility of antinociceptive cross-tolerance between systemic or topical morphine and systemic or topical cannabinoids in mice. Mice were made tolerant to morphine either by the subcutaneous (s.c.) implantation of a morphine pellet or repeated topical administration and then challenged with the mixed CB1 and CB2 receptor agonist WIN55, 212-2 given s.c. or topically. Antinociception was indicated by increased tail-flick latencies to noxious radiant heat. Implantation with morphine pellets did not attenuate the antinociceptive potency of systemic or topical WIN 55,212-2. Moreover, twice-daily topical administration of morphine did not attenuate the antinociceptive potency of WIN 55,212-2 applied topically. These observations suggest that opioids and cannabinoids produce antinociception through mechanisms that are independent of each other at either the systemic or peripheral levels.