Metabolic Engineering of Clostridium cellulolyticum for Production of Isobutanol from Cellulose

Abstract
Producing biofuels directly from cellulose, known as consolidated bioprocessing, is believed to reduce costs substantially compared to a process in which cellulose degradation and fermentation to fuel are accomplished in separate steps. Here we present a metabolic engineering example for the development of a Clostridium cellulolyticum strain for isobutanol synthesis directly from cellulose. This strategy exploits the host's natural cellulolytic activity and the amino acid biosynthesis pathway and diverts its 2-keto acid intermediates toward alcohol synthesis. Specifically, we have demonstrated the first production of isobutanol to approximately 660 mg/liter from crystalline cellulose by using this microorganism.