Ab initiocalculations of exchange interactions, spin-wave stiffness constants, and Curie temperatures of Fe, Co, and Ni

Abstract
We have calculated Heisenberg exchange parameters for bcc Fe, fcc Co, and fcc Ni using the nonrelativistic spin-polarized Green-function technique within the tight-binding linear muffin-tin orbital method and by employing the magnetic force theorem to calculate total energy changes associated with a local rotation of magnetization directions. We have also determined spin-wave stiffness constants and found the dispersion curves for metals in question employing the Fourier transform of calculated Heisenberg exchange parameters. Detailed analysis of convergence properties of the underlying lattice sums was carried out and a regularization procedure for calculation of the spin-wave stiffness constant was suggested. Curie temperatures were calculated both in the mean-field approximation and within the Green-function random-phase approximation. The latter results were found to be in a better agreement with available experimental data.