Application of a Monotonic Upstream-biased Transport Scheme to Three-Dimensional Constituent Transport Calculations

Abstract
The application of van Leer's scheme, a monotonic, upstream-biased differencing scheme, to three-dimensional constituent transport calculations is shown. The major disadvantage of the scheme is shown to be a self-limiting diffusion. A major advantage of the scheme is shown to be its ability to maintain constituent correlations. The scheme is adapted for a spherical coordinate system with a hybrid sigma-pressure coordinate in the vertical. Special consideration is given to cross-polar flow. The vertical wind calculation is shown to be extremely sensitive to the method of calculating the divergence. This sensitivity implies that a vertical wind formulation consistent with the transport scheme is essential for accurate transport calculations. The computational savings of the time-splitting method used to solve this equation are shown. Finally, the capabilities of this scheme are illustrated by an ozone transport and chemistry model simulation.