Structural Requirements of Angiotensin I-Converting Enzyme Inhibitory Peptides: Quantitative Structure−Activity Relationship Study of Di- and Tripeptides

Abstract
A database consisting of 168 dipeptides and 140 tripeptides was constructed from published literature to study the quantitative structure−activity relationships of angiotensin I-converting enzyme (ACE) inhibitory peptides. Two models were computed using partial least squares regression based on the three z-scores of 20 coded amino acids and further validated by cross-validation and permutation tests. The two-component model could explain 73.2% of the Y-variance (inhibitor concentration that reduced enzyme activity by 50%, IC50) with the predictive ability of 71.1% for dipeptides, while the single-component model could explain 47.1% of the Y-variance with the predictive ability of 43.3% for tripeptides. Amino acid residues with bulky side chains as well as hydrophobic side chains were preferred for dipeptides. For tripeptides, the most favorable residues for the carboxyl terminus were aromatic amino acids, while positively charged amino acids were preferred for the middle position, and hydrophobic amino acids were preferred for the amino terminus. According to the models, the IC50 values of seven new peptides with matchable primary sequences within pea protein, bovine milk protein, and soybean were predicted. The predicted peptides were synthesized, and their IC50 values were validated through laboratory determination of inhibition of ACE activity. Keywords: Angiotensin converting enzyme; bioactive peptides; quantitative structure−activity relationship (QSAR); partial least squares regression