Abstract
A voltage-controlled resistive switching is predicted for ferromagnetic multilayers and spin valves mechanically coupled to a ferroelectric substrate. The switching between low- and high-resistance states results from the strain-driven magnetization reorientations by about 90°, which are shown to occur in ferromagnetic layers with a high magnetostriction and weak cubic magnetocrystalline anisotropy. Such reorientations, not requiring external magnetic fields, can be realized experimentally by applying moderate electric field to a thick substrate (bulk or membrane type) made of a relaxor ferroelectric having ultrahigh piezoelectric coefficients. The proposed multiferroic hybrids exhibiting giant magnetoresistance may be employed as electric-write nonvolatile magnetic memory cells with nondestructive readout.