Selective transmission through very deep zero-order metallic gratings at microwave frequencies

Abstract
Zero-order metal grating structures are found to give extraordinary selective transmission at microwave frequencies through the resonant excitation of coupled surface waves. The metal slat structures with dielectric spacings as small as 250 μm strongly transmit wavelengths of several millimeters. A simple interpretation of these novel results which treats the deep grating structures as “filled” Fabry–Perot cavity systems gives model transmissivities which agree very well with the experimental data.