Error-tolerant visual planning of planar grasp

Abstract
This paper describes an efficient method to calculate, from an image of an object, configurations of a two-fingered robot gripper that form a "cage" to contain that object. Closing the fingers on the object from these configurations is guaranteed to reach a given desired grasp. This builds on the visual grasping theory of A. Blake et al. (1993), which describes how to find optimal grasps. It extends the results of E. Rimon and A. Blake (1996) which show how to construct such cages, in two ways. First, a more efficient algorithm for computing the cage is described. Second, a further development deals with occlusion by solving the caging problem within a restricted image window. The new methods greatly reduce the complexity of the visual caging problem, making it feasible in a real time computer vision system.

This publication has 9 references indexed in Scilit: