Novel fully automated 3D coreless filament winding technology

Abstract
Coreless filament winding technologies possess the potential to flexibly produce lightweight rigid frame structures at comparably low costs. The key to versatility, geometrical freedom and cost-effectiveness is the avoidance of core elements. Existing research on the filament winding of rigid frames focusses primarily on “isotruss” or “lattice” structures, manufactured by depositing fibers on polygon-shaped mandrels with carved-out gaps. Therefore, an investigation into the performance of coreless wound laminates and their material characteristics under process conditions is performed. Therefore, generic 2D specimens were manufactured on a new fully automated 3D winding equipment and successively exposed to incineration, micro-CT analysis and tensile testing. The benefits of core elements are evaluated by additional reference samples and opposed to coreless winding methods. The research demonstrates the potential of coreless filament winding and inductively quantifies the positive influence of fiber pretension and core/die elements on the material properties at cost of decreased versatility, costs and design degrees of freedom.

This publication has 11 references indexed in Scilit: