NO/cGMP signalling: L-citrulline and cGMP immunostaining in the central complex of the desert locust Schistocerca gregaria

Abstract
Nitric oxide (NO) is a gaseous messenger molecule formed during conversion of L-arginine into L-citrulline by the enzyme NO synthase (NOS), which belongs to a group of NADPH diaphorases. Because of its gaseous diffusion properties, NO differs from classical neurotransmitters in that it is not restricted to synaptic terminals. In target cells, NO activates soluble guanylyl cyclase leading to an increase in cGMP levels. In insects, this NO/cGMP-signalling pathway is involved in development, memory formation and processing of visual, olfactory and mechanosensory information. We have analysed the distribution of putative NO donor and target cells in the central complex, a brain area involved in sky-compass orientation, of the locust Schistocerca gregaria by immunostaining for L-citrulline and cGMP. Six types of citrulline-immunostained neurons have been identified including a bilateral pair of hitherto undescribed neurons that connect the lateral accessory lobes with areas anterior to the medial lobes of the mushroom bodies. Three-dimensional reconstructions have revealed the connectivity pattern of a set of 18 immunostained pontine neurons of the central body. All these neurons appear to be a subset of previously mapped NADPH-diaphorase-positive neurons of the central complex. At least three types of central-complex neurons show cGMP immunostaining including a system of novel columnar neurons connecting the upper division of the central body and the lateral triangle of the lateral accessory lobe. Our results provide the morphological basis for further studies of the function of the labelled neurons and new insights into NO/cGMP signalling.