Abstract
This work presents a preliminary investigation into the integration of particular subsystems of an automobile's chassis. The specific focus of this research is the integration of Active Suspension components with Anti-Lock braking (ABS) mechanisms. The performance objective for the integrated approach is defined as a reduction in braking distance over just anti-lock brakes. Several models, of varying degrees of complexity, are presented to determine the effect of modeling accuracy on the potential performance improvement. In the most detailed model, a four degree of freedom Half Car vehicle model is developed along with models for a hydraulic Active Suspension and an ABS system. For both subsystems, actuator dynamics are included. The tire-road interface is modeled using the Magic Formula tire model. Individual controllers are developed for the subsystems and a governing algorithm is constructed to coordinate the two controllers. Simulations of the integrated controller and an ABS system, for each system model, demonstrate a significant increase in performance.

This publication has 8 references indexed in Scilit: