Olivine-liquid equilibrium

Abstract
A number of experiments have been conducted in order to study the equilibria between olivine and basaltic liquids and to try and understand the conditions under which olivine will crystallize. These experiments were conducted with several basaltic compositions over a range of temperature (1150–1300° C) and oxygen fugacity (10−0.68–10−12 atm.) at one atmosphere total pressure. The phases in these experimental runs were analyzed with the electron microprobe and a number of empirical equations relating the composition of olivine and liquid were determined. The distribution coefficient 1 $$K_D = \frac{{(X_{{\text{FeO}}}^{{\text{Ol}}} )}}{{(X_{{\text{FeO}}}^{{\text{Liq}}} )}}\frac{{(X_{{\text{MgO}}}^{{\text{Liq}}} )}}{{(X_{{\text{MgO}}}^{{\text{Ol}}} )}}$$ relating the partioning of iron and magnesium between olivine and liquid is equal to 0.30 and is independent of temperature. This means that the composition of olivine can be used to determine the magnesium to ferrous iron ratio of the liquid from which it crystallized and conversely to predict the olivine composition which would crystallize from a liquid having a particular magnesium to ferrous iron ratio. A model (saturation surface) is presented which can be used to estimate the effective solubility of olivine in basaltic melts as a function of temperature. This model is useful in predicting the temperature at which olivine and a liquid of a particular composition can coexist at equilibrium.