An induction machine model for predicting inverter-machine interaction

Abstract
The conventional qd induction motor model typically used in drive simulations is very inaccurate in predicting machine performance, except perhaps for the fundamental component of the current and the average torque near rated operating conditions. Predictions of current and torque ripple are often in error by a factor of two to five. This work sets forth an induction machine model specifically designed for use with inverter models to study machine-inverter interaction. Key features include stator and rotor leakage saturation as a function of current and magnetizing flux, distributed effects in the rotor circuits, and a highly computationally efficient implementation. The model is considerably more accurate than the traditional qd model, particularly in its ability to predict switching frequency phenomena. The predictions of the proposed model are compared with those of the standard qd model and to experimental measurements on a 37 W induction motor drive.

This publication has 24 references indexed in Scilit: