Combining deterministic and Monte Carlo calculations for fast estimation of scatter intensities in CT

Abstract
A side effect of increased volume coverage by using multi-row and flat-panel detectors in computed tomography (CT) is the concurrently growing contribution of scattered radiation to the measured signal. In order to investigate the effect of scatter on x-ray projections used for CT imaging, our study aimed at the development of a simulation tool for fast calculation of primary and scatter intensities. We developed a deterministic method to assess the contribution of single-scatter events to the measured signal. The investigation of multiple scatter by Monte Carlo simulations showed that it results in a smooth signal as compared to single scatter. A hybrid method is proposed in order to optimize the performance of the scatter simulation: a fast and exact analytical calculation of the single-scatter intensity combined with a coarse Monte Carlo (MC) estimate of multiple scatter to reduce overall computational expenses, while assuring an acceptable signal quality. The results of the hybrid simulation of total scatter were in excellent agreement with the corresponding MC only simulations, thereby allowing us to reduce computational time by orders of magnitude. Estimates of two-dimensional scatter distributions for flat-panel CT imaging took about 30-40 s (per projection). The hybrid method provides a realistic simulation of x-ray scatter and offers a basis for scatter correction approaches.