Laser light scattering spectroscopy: a new method to measure tracheobronchial mucociliary activity.

Abstract
Laser light scattering spectroscopy is based on the evaluation of the frequency shift of coherent light scattered by moving particles. This makes it particularly suitable for use in light guiding systems. In this study laser light scattering spectroscopy was assessed for its ability to provide information on the motility of respiratory cilia. In vitro and in vivo measurements were undertaken with animal tracheal mucosa. The intensity fluctuations of laser light scattered from moving cilia were analysed in terms of their autocorrelation functions to provide information on the frequency and synchrony of beating cilia. In vitro measurements were performed on fresh bovine trachea to estimate a safe laser power level for mucosal exposure and to test the method by defining the temperature dependence of the ciliary beat frequency. Power densities not exceeding 0.3 kW/cm2 were found to be the upper limit for long term exposure of the mucosa in vitro. Ciliary beat frequency showed a pronounced temperature dependence, ranging from 5.8 to 28.3 Hz over the temperature range 20-43.5 degrees C. A maximum frequency was found at 41.5 degrees C. In vivo measurements of ciliary activity were performed in six pigs by means of optical fibres for light transmission combined with fibreoptic bronchoscopy. A ciliary beat frequency of 5 Hz was obtained; heart and breathing frequencies could be separated and identified. These results suggest that laser light scattering spectroscopy might provide a convenient method of studying the mucociliary system of the lower airways.