Abstract
The signal-to-noise ratio at an electrode array depends on the electrode area, the perimeter-to-area ratio of the electroactive portion of the surface, the mass transfer coefficient of the analyte-electrode combination, the measurement bandwidth, and the sources and magnitudes of the noises. Simple models for chronoamperometry with an array in quiescent solution and for hydrodynamic current at an array in one wall of a rectangular conduit through which analyte-containing solution is following are given. Noises from seven sources, including environmental noises, are considered in a noise model. The signal and noise models are combined to yield a model for signal-to-noise ratio at array-based electrochemical detectors. There exists an optimum array density for a given area that depends on the noise power, noise resistance, the current density at a sparse array, and the current density at a solid electrode of the same area. Approximations that lead to simple expressions for the optimum electroactive area fraction and noise resistance lead to results that are in good agreement with more complex and less approximate calculations. Electrodes of millimeter dimensions consisting of about 1% active surface with electroactive "pieces" of micrometer dimensions are anticipated to yield detection limits of about 1 fmol injected into a typical packed-column liquid chromatograph. This corresponds to about 10(-10) M analyte in the detector and about an order of magnitude improvement over solid electrodes.