Effect of modification of oxide layer on NiTi stent corrosion resistance

Abstract
Because of its good radiopacity, superelasticity, and shape memory properties, nickel-titanium (NiTi) is a potential material for fabrication of stents because these properties can facilitate their implantation and precise positioning. However, in vitro studies of NiTi alloys report the dependence of alloy biocompatibility and corrosion behavior on surface conditions. Surface oxidation seems to be very promising for improving the corrosion resistance and biocompatibility of NiTi. In this work, we studied the effect on corrosion resistance and surface characteristics of electropolishing, heat treatment, and nitric acid passivation of NiTi stents. Characterization techniques such as potentiodynamic polarization tests, scanning electron microscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy were used to relate corrosion behavior to surface characteristics and surface treatments. Results show that all of these surface treatments improve the corrosion resistance of the alloy. This improvement is attributed to the plastically deformed native oxide layer removal and replacement by a newly grown, more uniform one. The uniformity of the oxide layer, rather than its thickness and composition, seems to be the predominant factor to explain the corrosion resistance improvement.