NGF-promoted axon growth and target innervation requires GITRL-GITR signaling

Abstract
Nerve growth factor (NGF) has an important role in regulating sympathetic neuron survival and target field innervation during development. Here we show that glucocorticoid-induced tumor necrosis factor receptor–related protein (GITR), a member of the TNF superfamily, and its ligand (GITRL) are co-expressed in mouse sympathetic neurons when their axons are innervating their targets under the influence of target-derived NGF. In culture, GITRL enhanced NGF-promoted neurite growth from neonatal sympathetic neurons, and preventing GITR-GITRL interaction in these neurons or knocking down GITR inhibited NGF-promoted neurite growth without affecting neuronal survival. Tnfrsf18−/− (Gitr) neonates have reduced sympathetic innervation density in vivo compared with Gitr+/+ littermates. GITR activation is required for the phosphorylation of extracellular signal–regulated kinases 1 and 2 by NGF that is necessary for neurite growth. Our results reveal a previously unknown signaling loop in developing sympathetic neurons that is crucial for NGF-dependent axon growth and target innervation.