Input-dependent estimation of generalization error under covariate shift

Abstract
A common assumption in supervised learning is that the training and test input points follow the same probability distribution. However, this assumption is not fulfilled, e.g., in interpolation, extrapolation, active learning, or classification with imbalanced data. The violation of this assumption-known as the covariate shift-causes a heavy bias in standard generalization error estimation schemes such as cross-validation or Akaike's information criterion, and thus they result in poor model selection. In this paper, we propose an alternative estimator of the generalization error for the squared loss function when training and test distributions are different. The proposed generalization error estimator is shown to be exactly unbiased for finite samples if the learning target function is realizable and asymptotically unbiased in general. We also show that, in addition to the unbiasedness, the proposed generalization error estimator can accurately estimate the difference of the generalization error among different models, which is a desirable property in model selection. Numerical studies show that the proposed method compares favorably with existingmodel selection methods in regression for extrapolation and in classification with imbalanced data.