Max-Max Relay Selection for Relays with Buffers

Abstract
In this paper, we propose a new relay selection scheme for half-duplex relays with buffers. The proposed scheme is referred to as max-max relay selection (MMRS) since the relays with the best source-relay and the best relay-destination channels are selected for reception and transmission, respectively, which is only possible without data loss if the relays have buffers of infinite size. To relax this idealized assumption, we propose hybrid relay selection (HRS) for relays with buffers of finite size. HRS is a combination of conventional best relay selection (BRS) and MMRS and takes into account both the channel state and the buffer state for relay selection. We provide a comprehensive analysis of the outage and symbol error probabilities of both MMRS and HRS for a decode-and-forward protocol in Rayleigh fading. This analysis reveals that BRS, HRS, and MMRS achieve the same diversity gain. However, for N relays, MMRS achieves a signal-to-noise ratio (SNR) gain of 3(1-1/N) dB compared to BRS, and HRS closely approaches the SNR gain of MMRS for moderate buffer sizes (e.g. 30 transmission intervals).

This publication has 15 references indexed in Scilit: