Automatic symbolic verification of embedded systems

Abstract
Presents a model-checking procedure and its implementation for the automatic verification of embedded systems. The system components are described as hybrid automata-communicating machines with finite control and real-valued variables that represent continuous environment parameters such as time, pressure and temperature. The system requirements are specified in a temporal logic with stop-watches, and verified by symbolic fixpoint computation. The verification procedure-implemented in the Cornell Hybrid Technology tool, HyTech-applies to hybrid automata whose continuous dynamics is governed by linear constraints on the variables and their derivatives. We illustrate the method and the tool by checking safety, liveness, time-bounded and duration requirements of digital controllers, schedulers and distributed algorithms.

This publication has 33 references indexed in Scilit: