Comparative in situ analysis of ipdC–gfpmut3 promoter fusions of Azospirillum brasilense strains Sp7 and Sp245

Abstract
Inoculation of wheat roots with Azospirillum brasilense results in an increase of plant growth and yield, which is proposed to be mainly due to the bacterial production of indole‐3‐acetic acid in the rhizosphere. Field inoculation experiments had revealed more consistent plant growth stimulation using A. brasilense strain Sp245 as compared with the strain Sp7. Therefore, the in situ expression of the key gene ipdC (indole‐3‐pyruvate decarboxylase) was examined in these two strains. Within the ipdC promoter of strain Sp245 a region of 150 bases was identified, which was missing in strain Sp7. Thus, three different translational ipdC promoter fusions with gfpmut3 were constructed on plasmid level: the first contained the part of the Sp245 promoter region homologous to strain Sp7, the second was bearing the complete promoter region of Sp245 including the specific insertion and the third comprised the Sp7 promoter region. By comparing the fluorescence levels of these constructs after growth on mineral medium with and without inducing amino acids, it could be demonstrated that ipdC expression in A. brasilense Sp245 was subject to a stricter control compared with strain Sp7. Microscopic detection of these reporter strains colonizing the rhizoplane documented for the first time an in situ expression of ipdC.

This publication has 35 references indexed in Scilit: