Abstract
The electronic structures of different morphologies of carbon nanotubes are investigated within either tight-binding or ab initio frameworks. After a brief description of the electronic properties of the “perfect” rolled-up graphene sheet, nanotubes containing pentagon-heptagon pairs, tips (hemispherical caps), sp3-like lines responsible for polygonization, multishell and solid-state packings (bundles) are studied in order to point out the influence of such defects on the electronic states of the “perfect” cylinders. Most of the time, a structural optimization was performed on the atomic topology, prior to the calculation of the electronic properties. Connections with experimental facts are indicated as frequently as possible.