Histidine-Rich Glycoprotein Protects from Systemic Candida Infection

Abstract
Fungi, such as Candida spp., are commonly found on the skin and at mucosal surfaces. Yet, they rarely cause invasive infections in immunocompetent individuals, an observation reflecting the ability of our innate immune system to control potentially invasive microbes found at biological boundaries. Antimicrobial proteins and peptides are becoming increasingly recognized as important effectors of innate immunity. This is illustrated further by the present investigation, demonstrating a novel antifungal role of histidine-rich glycoprotein (HRG), an abundant and multimodular plasma protein. HRG bound to Candida cells, and induced breaks in the cell walls of the organisms. Correspondingly, HRG preferentially lysed ergosterol-containing liposomes but not cholesterol-containing ones, indicating a specificity for fungal versus other types of eukaryotic membranes. Both antifungal and membrane-rupturing activities of HRG were enhanced at low pH, and mapped to the histidine-rich region of the protein. Ex vivo, HRG-containing plasma as well as fibrin clots exerted antifungal effects. In vivo, Hrg−/− mice were susceptible to infection by C. albicans, in contrast to wild-type mice, which were highly resistant to infection. The results demonstrate a key and previously unknown antifungal role of HRG in innate immunity. It has been estimated that humans contain about 1 kg of microbes, an observation that reflects our coexistence with colonizing microbes such as bacteria and fungi. The fungal species Candida is present as a commensal at mucosal surfaces and on skin. Although it may cause life-threatening infections, such as sepsis, particularly in immunocompromised individuals, it seldom causes disease in normal individuals. In order to control our microbial flora, humans as well as virtually all life forms are armoured with various proteins and peptides that comprise integral parts of our innate immune system. Here we describe a new component in this system; histidine-rich glycoprotein (HRG), an abundant plasma protein. We show, using a combination of microbiological, biochemical, and biophysical methods, that HRG exerts a potent antifungal activity, which is mediated via a histidine-rich region of the protein, and targets ergosterol-rich membrane structures such as those of Candida. HRG killed Candida both in plasma as well as when incorporated into fibrin clots. In mouse infection models, HRG was protective against systemic infection by Candida, indicating a novel antifungal role of HRG in innate immunity.