Abstract
Lymphocyte function-associated Ag-1 (LFA-1) or CD11a/CD18 mediates lymphocyte adhesion to cultured vascular endothelial cells (EC). Thus, LFA-1 likely plays a major role in lymphocyte migration out of the blood, but there is little information on this in vivo. Small peritoneal exudate lymphocytes (sPEL) and lymph node (LN) lymphoblasts adhere to cytokine-activated EC and preferentially migrate to cutaneous inflammatory sites. The role of LFA-1 in the adherence and in vivo migration of these T cells was determined. Because of a lack of anti-rat LFA-1, mAb were prepared to rat T cells. One mAb, TA-3, inhibited homotypic aggregation; T cell proliferation to Ag, alloantigens, and mitogens; stained all leukocytes; and immunoprecipitated 170- and 95-kDa polypeptides from lymphocytes and neutrophils. TA-3 binding to lymphocytes also required Ca2+, but not Mg2+. Thus, TA-3 appears to react with rat LFA-1. TA-3 inhibited spleen T cell adhesion to unstimulated EC by 30% and to IFN-gamma, TNF-alpha, IL-1 alpha, and LPS stimulated EC by 50 to 60% but inhibited sPEL EC adhesion by only 10%. TA-3 also strongly inhibited anti-CD3-stimulated LN T cell adherence. The migration of spleen T cells to delayed-type hypersensitivity and skin sites injected with LPS, poly I:C, IFN-gamma, IFN-alpha/beta, and TNF was inhibited by 72 to 88% by TA-3, and was decreased by 50% to peripheral LN. TA-3 caused less but still 50 to 60% inhibition of sPEL migration to inflamed skin. Lymphoblast migration to skin was inhibited 40 to 80% and to PLN by 30%. Migration of lymphocytes from all sources to mesenteric LN was inhibited by 32 to 60%. In conclusion, LFA-1 mediates much of the adherence of spleen T cells and lymphoblasts to EC in vitro, most of the migration of these cells to dermal inflammation and about 50% of the homing of LN and spleen T cells to peripheral and mesenteric LN. sPEL are less dependent on LFA-1 for adhesion to EC in vitro and for migration to inflamed skin and LN in vivo.