Model of Nanocrystal Formation in Solution by Burst Nucleation and Diffusional Growth

Abstract
The phenomenon of burst nucleation in solution, in which a period of apparent chemical inactivity is followed by a sudden and explosive growth of nucleated particles from a solute species, has been given a widely accepted qualitative explanation by LaMer and co-workers. Here, we present a model with the assumptions of instantaneous rethermalization below the critical nucleus size and irreversible diffusive growth above the critical size, which for the first time formulates LaMer's explanation of burst nucleation in a manner allowing quantitative calculations. The behavior of the model at large times, t, is derived with the result that the average cluster size, as measured by the number of atoms, grows ∼t, while the width of the cluster distribution grows ∼. We develop an effective numerical scheme to integrate the equations of the model and compare the asymptotic expressions to results from numerical simulation. Finally, we discuss the physical effects which cause real nucleation processes in solution to deviate from the behavior of the model.