Cholesterol-Induced Changes of Type VIII Collagen Expression and Distribution in Carotid Arteries of Rabbit

Abstract
Abstract —Lipoproteins play a major role in cardiovascular disease and atherosclerosis. In the vascular wall, they strongly influence the organization of extracellular matrix. The present study set out to investigate the changes in the extracellular matrix of the vessel wall induced by atherogenic diet, focusing on type VIII collagen, a vascular collagen that has not previously been investigated in detail. The influence of cholesterol diet on the expression, distribution, and deposition of type VIII collagen was examined in carotid arteries of New Zealand White rabbits. Carotid arteries of rabbits receiving diet supplemented with 1% cholesterol for 6 weeks and those on the same regimen followed by normal chow for 1 day, 10 days, 5 weeks, and 12 weeks were studied and compared with controls not exposed to the cholesterol diet. Carotid arteries of normocholesterolemic rabbits contained type VIII collagen–expressing cells in all layers, with focal accumulations of expressing cells in the subendothelial areas, the outer medial zone, and the adventitia. In response to cholesterol diet, type VIII collagen synthesis was reduced in media and adventitia and the distribution patterns changed. Expressing cells were found predominantly in the endothelium, and type VIII collagen accumulated in the intimal space. Immunogold labeling for electron microscopy revealed that type VIII collagen in the intima is associated with microfibrils extending from the internal elastic lamina. Withdrawal of cholesterol resulted in reestablishment of the normal distribution pattern. Northern and Western blot analyses supported the immunoconfocal and in situ hybridization data, demonstrating decreased type VIII collagen expression in response to cholesterol diet and progressive recovery to normal levels with time after withdrawal of cholesterol. Our study demonstrates that type VIII collagen is modulated in the presence of cholesterol. The data indicate that type VIII collagen is specifically remodeled during early experimental atherosclerosis, implying a role for this extracellular matrix component in neointimal growth.