Parp-1 deficiency causes an increase of deletion mutations and insertions/rearrangements in vivo after treatment with an alkylating agent

Abstract
Accumulated evidence suggests that Parp-1 is involved in DNA repair processes, including base excision repair, single-strand and double-strand break repairs. To understand the precise role of Parp-1 in genomic stability in vivo, we carried out mutation analysis using Parp-1 knockout (Parp-1−/−) mice harboring two marker genes, gpt and red/gam genes. Spontaneous mutant frequencies of both genes in the bone marrows and livers did not differ significantly between Parp-1−/− and Parp-1+/+ mice (P>0.05). After treatment with an alkylating agent, N-nitrosobis(2-hydroxypropyl)amine (BHP), the mutant frequency of the red/gam genes in the liver in Parp-1−/− mice was 1.6-fold higher than that in Parp-1+/+ mice (PParp-1−/− than in Parp-1+/+ mice (Pgpt gene in the livers of Parp-1−/− and Parp-1+/+ mice after BHP treatment were both elevated and there was no significant difference between the genotypes. These results indicate that Parp-1 is implicated in suppressing deletion mutations in vivo, especially those accompanying small insertions or rearrangements.

This publication has 58 references indexed in Scilit: