Lateral resolution enhancement with standing evanescent waves

Abstract
A high-resolution fluorescence microscopy technique has been developed that achieves a lateral resolution of better than one sixth of the emission wavelength (FWHM). By use of a total-internal-reflection geometry, standing evanescent waves are generated that spatially modulate the excitation of the sample. An enhanced two-dimensional image is formed from a weighted sum of images taken at different phases and directions of the standing wave. The performance of such a system is examined through theoretical calculations of both the point-spread function and the optical transfer function.