Application of Multi-Omics Techniques for Bioprocess Design and Optimization in Chinese Hamster Ovary Cells

Abstract
Significant improvements in the productivity and quality of therapeutic proteins produced in Chinese hamster ovary (CHO) cells have been reported since their establishment as host cells for biopharmaceutical production. Initial advances in the field focused on engineering strategies to manipulate genes associated with proliferation, apoptosis, and various metabolic pathways. Process engineering efforts to optimize culture media, batch-feeding strategies and culture conditions, including temperature and osmolarity, were also reported. More recently, focus has shifted toward enhancing process consistency and product quality using systems biology quality by design-based approaches during process development. Integration of different data generated using omics technologies, such as genomics, transcriptomics, proteomics and metabolomics, has facilitated a greater understanding of CHO cell biology. These techniques have enabled the provision of global information on dynamic changes in cellular components associated with different phenotypes. Using systems biology to understand these important host cells at the cellular level will undoubtedly result in further progression in the development and expression of biopharmaceutical products in CHO cells.
Funding Information
  • Science Foundation Ireland (11/SIRG/B2107)

This publication has 100 references indexed in Scilit: