Clay dispersion as influenced by pH and net particle charge of sodic soils

Abstract
The effect of changing pH on the dispersion of clay from sodic soils was investigated in relation to changes in net charge on clay particles. A positive relationship was obtained between pH and the percentage of dispersible clay for each soil clay. The percentage increase in net negative charge was also positively correlated with pH. However, the slopes of these relationships varied between soil clays. In general, the net negative charge was the primary factor in clay dispersion and the pH affected clay dispersion by changing the net charge on clay particles. In comparing the values for pure clay minerals quoted in the literature with soil clays having similar mineralogy, it was found that soil clays had higher flocculation values. This is shown to be due to higher net negative charge on soil clays than the corresponding values for pure clay minerals found in the literature. The effect of soil organic matter in enhancing the net negative charge probably contributes to the higher charge on soil clays. The critical dispersion concentration for clay dispersion from soil aggregates was lower than the flocculation values observed for the separated soil clays. The separated soil clays had high negative charge due to exposure of surfaces which were originally bonded in the aggregates. The dispersive potential of a number of Alfisols, Oxisols, Aridisols (calcareous soils) and Vertisols collected from different parts of Australia was highly correlated with soil pH. The relationship with CEC was poor because CEC was estimated at a pH different to the natural pH of the soil. This study has brought out the importance of pH in the management of dispersive soils.