A complex containing p34cdc2 and cyclin B phosphorylates the nuclear lamin and disassembles nuclei of clam oocytes in vitro.

Abstract
Cell-free extracts prepared from activated clam oocytes contain factors which induce phosphorylation of the single 67-kD lamin (L67), disassemble clam oocyte nuclei, and cause chromosome condensation in vitro (Dessev, G., R. Palazzo, L. Rebhun, and R. Goldman. 1989. Dev. Biol. 131:469-504). To identify these factors, we have fractionated the oocyte extracts. The nuclear lamina disassembly (NLD) activity, together with a protein kinase activity specific for L67, appear as a single peak throughout a number of purification steps. This peak also contains p34cdc2, cyclin B, and histone H1-kinase activity, which are components of the M-phase promoting factor (MPF). The NLD/L67-kinase activity is depleted by exposure of this purified material to Sepharose conjugated to p13suc1, and is restored upon addition of a p34cdc2/p62 complex from HeLa cells. The latter complex phosphorylates L67 and induces NLD in the absence of other clam oocyte proteins. Our results suggest that a single protein kinase activity (p34cdc2-H1 kinase, identical with MPF) phosphorylates the lamin and is involved in the meiotic breakdown of the nuclear envelope in clam oocytes.