Visualization of acidic compartments in cultured osteoclasts by use of an acidotrophic amine as a marker for low pH

Abstract
Using the acidotrophic amine 3-(2,4-dinitroanillino)-3'-amino-N-methyldipropylamine (DAMP) as a marker for low pH and immunofluorescence cytochemistry, we examined acidic compartments of osteoclasts cultured on cover glasses or bone slices, where they could resorb the bone surface, forming resorptive lacunae. DAMP-positive structures were seen as vesicular and tubular forms in the cytoplasm, indicating lysosomes and endosomes. Not only the osteoclastic cytoplasm but also the extracellular area around the ruffled border and resorptive lacunae were stained with DAMP, suggesting acidic regions. Immunofluorescence was localized predominantly on the substratum side of actively resorbing osteoclasts, whereas an evenly distributed staining pattern was seen in the nonactive cell. The most intensive reaction was seen at the advancing front of resorptive lacunae within the actively resorbing osteoclasts. The distribution pattern of DAMP seemed to be correlated with the osteoclastic activity, since osteoclasts exhibit alternating resorption and migration phases during the bone-remodeling cycle. In this culture system, the resorptive lacunae were left behind after the osteoclasts had completed resorption and migrated along the bone surface. These exposed resorptive lacunae were also stained with DAMP, which were presumably kept at an acidic pH. The effect of treatment with monensin, chloroquine, ammonium chloride, or nigericin was varied in terms of the immunoreactivity for DAMP, but not complete abolition of the staining was obtained. Weak bases such as chloroquine or ammonium chloride inhibited both intra- and extracellular immunoreactivity. Immunoreactivity for the vacuolar type of proton ATPase (V-ATPase) was demonstrable in the cytoplasm of the osteoclasts but was weakened by the addition of bafilomycin. Immunofluorescence of the resorptive lacunae was still retained even after the treatment with bafilomycin and acetazolamide. Besides, both bafilomycin and acetazolamide reversibly inhibited cellular acidity as judged by DAMP immunocytochemistry, which agrees with the fact that ostoeclastic acidification results from the action of vacuolar proton-pump ATPase coupled with carbonic anhydrase.