Abstract
Recent analyses of long time scale secular variations of sea level, based on tide gauge observations, have established that sea level is apparently rising at a globally averaged rate somewhat in excess of 1 millimeter per year. It has been suggested that the nonsteric component of this secular rate might be explicable in terms of ongoing mass loss from the small ice sheets and glaciers of the world. Satellite laser ranging and very long baseline interferometry data may be used to deliver strong constraints on this important scenario because of the information that these systems provide on variations of the length of day and of the position of the rotation pole with respect to the earth's surface geography. These data demonstrate that the hypothesis of mass loss is plausible if the Barents Sea was covered by a substantial ice sheet at the last maximum of the current ice age 18,000 years ago.