Cleavage of pyrimidine dimers in specific DNA sequences by a pyrimidine dimer DNA-glycosylase of M. luteus

Abstract
Pyrimidine dimer formation in response to UV radiation is governed by the thymine content of the potential dimer and the two flanking nucleotides. An enzymatic activity can be purified from Micrococcus luteus that cleaves the N-glycosyl bond between the 5′ pyrimidine of a dimer and the corresponding sugar without rupture of a phosphodiester bond. We propose that strand scission at a dimer site by the M. luteus enzyme requires two activities, a pyrimidine dimer DNA-glycosylase and an apyrimidinic/apurinic endonuclease.