Genetic and epigenetic mechanisms of NASH

Abstract
Along with the obesity epidemic, the prevalence of nonalcoholic fatty liver disease (NAFLD) has increased exponentially. The histological disease spectrum of NAFLD ranges from bland fatty liver (hepatic steatosis), to the concomitant presence of inflammation and ballooning which defines nonalcoholic steatohepatitis (NASH). The latter can progress in a subset to fibrosis, leading ultimately to cirrhosis and hepatocellular carcinoma. The past decade has seen tremendous advances in our understanding of the genetic and epigenetic bases of NAFLD, mainly through the application of high end technology platforms including genome-wide association studies (GWAS). These have helped to define common gene variants (minor allele frequency > 5 %) that contribute to the NAFLD phenotype. Looking to the future, these discoveries are expected to lead to improved diagnostics, the personalization of medicine, and a better understanding of the pathophysiological underpinnings that drive the transition from NAFLD to steatohepatitis and fibrosis, leading to the identification of novel therapeutic targets. In this review, we summarize data on the current state of knowledge with regard to the genetic and epigenetic mechanisms for the development of NASH.