A High Density SNP Array for the Domestic Horse and Extant Perissodactyla: Utility for Association Mapping, Genetic Diversity, and Phylogeny Studies

Abstract
An equine SNP genotyping array was developed and evaluated on a panel of samples representing 14 domestic horse breeds and 18 evolutionarily related species. More than 54,000 polymorphic SNPs provided an average inter-SNP spacing of ∼43 kb. The mean minor allele frequency across domestic horse breeds was 0.23, and the number of polymorphic SNPs within breeds ranged from 43,287 to 52,085. Genome-wide linkage disequilibrium (LD) in most breeds declined rapidly over the first 50–100 kb and reached background levels within 1–2 Mb. The extent of LD and the level of inbreeding were highest in the Thoroughbred and lowest in the Mongolian and Quarter Horse. Multidimensional scaling (MDS) analyses demonstrated the tight grouping of individuals within most breeds, close proximity of related breeds, and less tight grouping in admixed breeds. The close relationship between the Przewalski's Horse and the domestic horse was demonstrated by pair-wise genetic distance and MDS. Genotyping of other Perissodactyla (zebras, asses, tapirs, and rhinoceros) was variably successful, with call rates and the number of polymorphic loci varying across taxa. Parsimony analysis placed the modern horse as sister taxa to Equus przewalski. The utility of the SNP array in genome-wide association was confirmed by mapping the known recessive chestnut coat color locus (MC1R) and defining a conserved haplotype of ∼750 kb across all breeds. These results demonstrate the high quality of this SNP genotyping resource, its usefulness in diverse genome analyses of the horse, and potential use in related species. We utilized the previously generated horse genome sequence and a large SNP database to design an ∼54,000 SNP assay for use in the domestic horse and related species. The utility of this SNP array was demonstrated through genome-wide linkage disequilibrium, inbreeding and genetic distance measurements within breeds, as well as multidimensional scaling and parsimony analysis. Association mapping confirmed a large conserved segment containing the chestnut coat color locus in domestic horses. We also assess the utility of the SNP array in related species, including the Przewalski's Horse, zebras, asses, tapirs, and rhinoceros. This SNP genotyping tool will facilitate many genetics applications in equids, including identification of genes for health and performance traits, and compelling studies of the origins of the domestic horse, diversity within breeds, and evolutionary relationships among related species.