Tumor Necrosis Factor α Stimulates Osteoclast Differentiation by a Mechanism Independent of the Odf/Rankl–Rank Interaction

Top Cited Papers
Open Access
Abstract
Osteoclast differentiation factor (ODF, also called RANKL/TRANCE/OPGL) stimulates the differentiation of osteoclast progenitors of the monocyte/macrophage lineage into osteoclasts in the presence of macrophage colony-stimulating factor (M-CSF, also called CSF-1). When mouse bone marrow cells were cultured with M-CSF, M-CSF-dependent bone marrow macrophages (M-BMM phi) appeared within 3 d. Tartrate-resistant acid phosphatase-positive osteoclasts were also formed when M-BMM phi were further cultured for 3 d with mouse tumor necrosis factor alpha (TNF-alpha) in the presence of M-CSF. Osteoclast formation induced by TNF-alpha was inhibited by the addition of respective antibodies against TNF receptor 1 (TNFR1) or TNFR2, but not by osteoclastogenesis inhibitory factor (OCIF, also called OPG, a decoy receptor of ODF/RANKL), nor the Fab fragment of anti-RANK (ODF/RANKL receptor) antibody. Experiments using M-BMM phi prepared from TNFR1- or TNFR2-deficient mice showed that both TNFR1- and TNFR2-induced signals were important for osteoclast formation induced by TNF-alpha. Osteoclasts induced by TNF-alpha formed resorption pits on dentine slices only in the presence of IL-1alpha. These results demonstrate that TNF-alpha stimulates osteoclast differentiation in the presence of M-CSF through a mechanism independent of the ODF/RANKL-RANK system. TNF-alpha together with IL-1alpha may play an important role in bone resorption of inflammatory bone diseases.