Precipitation Anomalies in Southern Brazil Associated with El Niño and La Niña Events

Abstract
The impact of El Niño and La Niña events (warm and cold phases of the Southern Oscillation) on rainfall over southern Brazil is investigated through the use of a large dataset of monthly precipitation from 250 stations. This region is partly dominated by rough orography and presents different climatic regimes of rainfall. As previous global studies on Southern Oscillation–precipitation relationships used data from only two stations in southern Brazil, this region was not included in the area of consistent Southern Oscillation–related precipitation in southeastern South America. The present analysis is based on the method by Ropelewski and Halpert, the sensitivity of which is assessed for this region. The spatial structure of the rainfall anomalies associated with warm (cold) events is analyzed and subregions with coherent anomalies are determined. Their distribution indicates the influence of relief, latitude, and proximity to the ocean. These areas are subjected to further analysis to determine the seasons of largest anomalies and assess their consistency during warm (cold) events. The whole of southern Brazil was found to have strong and consistent precipitation anomalies associated with those events. Their magnitude is even larger than in Argentina and Uruguay. All of the subregions have consistent wet anomalies during the austral spring of the warm event year, with a pronounced peak in November. The southeastern part also shows a consistent tendency to higher than average rainfall during the austral winter of the following year. There is also a consistent tendency to dryness in the year before a warm event. During the spring of cold event years strong consistent dry anomalies prevail over the whole region, also with maximum magnitude in November. They are even stronger and more consistent than the wet anomalies in warm event years. Consistent anomalies do not occur over large areas in the years before and after cold events. The wet anomalies during the austral spring of the warm event year weaken and even reverse during the following January. The same tendency, though not so clear, is observable in the dry anomalies of cold events. The seasons of largest anomalies disclosed by this study differ from those found by previous global studies for other regions in southeastern South America. This study expands the area of consistent warm (cold) event-related precipitation defined by previous studies in southeastern South America by including a region of larger anomalies, and provides a spatial and temporal refinement to the warm (cold) event–precipitation relationship.