Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip

Abstract
Micromachining technology was used to prepare chemical analysis systems on glass chips (1 centimeter by 2 centimeters or larger) that utilize electroosmotic pumping to drive fluid flow and electrophoretic separation to distinguish sample components. Capillaries 1 to 10 centimeters long etched in the glass (cross section, 10 micrometers by 30 micrometers) allow for capillary electrophoresis-based separations of amino acids with up to 75,000 theoretical plates in about 15 seconds, and separations of about 600 plates can be effected within 4 seconds. Sample treatment steps within a manifold of intersecting capillaries were demonstrated for a simple sample dilution process. Manipulation of the applied voltages controlled the directions of fluid flow within the manifold. The principles demonstrated in this study can be used to develop a miniaturized system for sample handling and separation with no moving parts.