Parametric Amplification and Self-Oscillation in a Nanotube Mechanical Resonator

Abstract
A hallmark of mechanical resonators made from a single nanotube is that the resonance frequency can be widely tuned. Here, we take advantage of this property to realize parametric amplification and self-oscillation. The gain of the parametric amplification can be as high as 18.2 dB and tends to saturate at high parametric pumping due to nonlinear damping. These measurements allow us to determine the coefficient of the linear damping force. The corresponding damping rate is lower than the one obtained from the line shape of the resonance (without pumping), supporting the recently reported scenario that describes damping in nanotube resonators by a nonlinear force. The possibility to combine nanotube resonant mechanics and parametric amplification holds promise for future ultralow force sensing experiments.