A high-yield microassembly structure for three-dimensional microelectrode arrays

Abstract
This paper presents a practical microassembly process for three-dimensional (3-D) microelectrode arrays for recording and stimulation in the central nervous system (CNS). Orthogonal lead transfers between the micromachined two-dimensional probes and a cortical surface platform are formed by attaching gold beams on the probes to pads on the platform using wire-free ultrasonic bonding. The low-profile (150 microns) outrigger design of the probes allows the bonding of fully assembled high-density arrays. Micromachined assembly tools allow the formation of a full 3-D probe array within 30 min. Arrays having up to 8 x 16 shanks on 200-micron centers have been realized and used to record cortical single units successfully. Active 3-D probe arrays containing on-chip CMOS signal processing circuitry have also been created using the microassembly approach. In addition, a dynamic insertion technique has been explored to allow the implantation of high-density probe arrays into feline cortex at high-speed and with minimal traumatic injury.

This publication has 16 references indexed in Scilit: