Abstract
1. Compound action potentials were recorded from certain muscle and cutaneous nerves in normal and chronically de-efferentated hind limbs of cats during stimulation of the appropriate dorsal spinal roots, 2. The peaks for groups I, II and III in the compound action potential were correlated with the corresponding peaks in the fibre-diameter histograms of the same de-efferentated nerve after processing it for light microscopy. 3. The scaling factor (ratio of conduction velocity in m/sec to total diameter in micrometer) was not constant for all sizes of fibre nor did it increase progressively with fibre size. Evidence is presented that a logarithmic relation between conduction velocity and fibre diameter is not appropriate. 4. In muscle nerves the scaling factor for fibres fixed by glutaraldehyde perfusion and embedded in Epon was 5.7 for group I afferent fibres and 4.6 for myelinated fibres in both group II and group III. 5. In cutaneous nerves the scaling factor was 5.6 for large fibres (group I or Abeta) and 4.6 for small fibres (group III or Adelta). 6. The scaling factor for group I fibres is the same as was found previously for alpha-efferent fibres, and that for groups II and III is the same as for gamma-efferent fibres (Boyd & Davey, 1968). 7. The possibility that there is a clear discontinuity in scaling factor between fibres in groups I and alpha, and those in other functional groups, is discussed. 8. It is concluded that there must be some structural feature of alpha and group I fibres which differs from that of smaller myelinated fibres. It is likely that a difference in the relative thickness of the myelin sheath is involved and possibly also in the conductances responsible for generating the action potential.