Simulation of Graphene Nanoribbon Field-Effect Transistors

Abstract
We present an atomistic 3-D simulation of graphene nanoribbon field-effect transistors (GNR-FETs), based on the self consistent solution of the 3-D Poisson and Schrodinger equations with open boundary conditions within the nonequilibrium Green's function formalism and a tight-binding Hamiltonian. With respect to carbon nanotube FETs, GNR-FETs exhibit comparable performance, reduced sensitivity to the variability of channel chirality, and similar leakage problems due to band-to-band tunneling. Acceptable transistor performance requires prohibitive effective nanoribbon width of 1-2 nm and atomistic precision that could in principle be obtained with periodic etch patterns or stress patterns.